Integral Representations for Products of Two Bessel or Modified Bessel Functions
نویسندگان
چکیده
منابع مشابه
Integral Representations for Neumann - Type Series of Bessel Functions
Recently Pogány and Süli [Proc. Amer. Math. Soc. 137(7) (2009), 2363–2368] derived a closed-form integral expression for Neumann series of Bessel functions of the first kind Jν . In this paper our aim is to establish analogous integral representations for the Neumann-type series of modified Bessel functions of the first kind Iν and for Bessel functions of the second kind Yν , Kν , and to give l...
متن کاملSome Inequalities for Modified Bessel Functions
We denote by Iν and Kν the Bessel functions of the first and third kind, respectively. Motivated by the relevance of the function wν t t Iν−1 t /Iν t , t > 0, in many contexts of applied mathematics and, in particular, in some elasticity problems Simpson and Spector 1984 , we establish new inequalities for Iν t /Iν−1 t . The results are based on the recurrence relations for Iν and Iν−1 and the ...
متن کاملRepresentation of the Modified Bessel Functions ∗
Some power series representations of the modified Bessel functions (McDonald functions Kα) are derived using the little known formalism of fractional derivatives. The resulting summation formulae are believed to be new. 1 Fractional derivatives There are several non-trivial examples in mathematics when some quantity, originally defined as integer, can radically extend its original range and ass...
متن کاملOn a Product of Modified Bessel Functions
Let Iν and Kν denote the modified Bessel functions of the first and second kinds of order ν. In this note we prove that the monotonicity of u → Iν(u)Kν(u) on (0,∞) for all ν ≥ −1/2 is an almost immediate consequence of the corresponding Turán type inequalities for the modified Bessel functions of the first and second kinds of order ν. Moreover, we show that the function u → Iν(u)Kν(u) is strict...
متن کاملOn two-dimensional Bessel functions
The general properties of two-dimensional generalized Bessel functions are discussed. Various asymptotic approximations are derived and applied to analyze the basic structure of the two-dimensional Bessel functions as well as their nodal lines.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2019
ISSN: 2227-7390
DOI: 10.3390/math7100978